Bodhee Prep-CAT Online Preparation

CAT 2019 Quant Question with Solution 65

If $5^{x}-3^{y}=13438$ and $5^{x-1}+3^{y+1}=9686,$ then x+y equals

Show Answer

Correct Answer: 13

Taking $2^{n d}$ equation

$5^{x-1}+3^{y+1}=9686$, the last digit of $5^{x-1}$ will always be 5 for all positive integral values of x

The power cycle of 3 is:

$3^{4 k+1} \equiv 3$

$3^{4 k+2} \equiv 9$

$3^{4 k+3} \equiv 7$

$3^{4 k} \equiv 1$

Clearly $3^{y+1}$ must be in the form of $3^{4 k}$ as the unit digit of R.H.S. =6

We have ${{3}^{4}}=81,\text{and}\ {{3}^{8}}=6561$

Also, $9686-81=9605$and $9686-6561=3125$

Observe that $3125=5^{5}$

Hence $5^{x-1}=5^{5}$

or $x=6$ and $3^{y+1}=3^{8} \Rightarrow y=7$

(x=6 and y=7 also satisfies the first equation)

Therefore, $x+y=6+7=13$

CAT Online Course
Also Check: 841+ CAT Quant Questions with Solutions

CAT 2019 Slot-1

CAT 2019 Slot-2

CAT 2023
Classroom Course

We are starting classroom course for CAT 2023 in Gurugram from the month of December.
Please fill the form to book your seat for FREE Demo Classes

CAT 2023 Classroom Course starts in Gurgaon