Question:
Let a, b, x, y be real numbers such that $a^{2}+b^{2}=25, x^{2}+y^{2}=169,$ and $a x+b y=65$. If $k=a y-b x$ , then
- $\mathrm{k}=0$
- $0<\mathrm{k} \leq \frac{5}{13}$
- $\mathrm{k}=\frac{5}{13}$
- $\mathrm{k}>\frac{5}{13}$
Correct Answer: Option: 1
Shortcut:
We can take a=5, b=0, x=13 and y=0 as values which satisfies all three equations.
Hence, $k=ay-bx=5\times 0-0\times 13=0$
CAT Online Course
Also Check: 841+ CAT Quant Questions with Solutions