Bodhee Prep-Online CAT Coaching | Online CAT Preparation | CAT Online Courses

Get 10% OFF on CAT 24 Course. Code: BODHEE10 valid till 25th April Enroll Now

CAT 2019 Quant Question with Solution 28

If the rectangular faces of a brick have their diagonals in the ratio $3: 2 \sqrt{3}: \sqrt{15},$ then the ratio of the length of the shortest edge of the brick to that of its longest edge is

  1. $\sqrt{3}: 2$
  2. $2: \sqrt{5}$
  3. $1: \sqrt{3}$
  4. $\sqrt{2}: \sqrt{3}$
Show Answer

Correct Answer: Option: 3

Let the edges of the brick be a, b, and c such that $a<b<c$


${{a}^{2}}+{{c}^{2}}={{\left( 2\sqrt{3} \right)}^{2}}=12...(2)$

${{b}^{2}}+{{c}^{2}}={{\left( \sqrt{15} \right)}^{2}}=15...(3)$

Adding all three equations. We get

$2\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)=9+12+15=36$


From (1) and (4), $c=3$

From (3) and (4), $a=\sqrt{3}$

Therefore, required ratio = $\frac{a}{c}=\frac{\sqrt{3}}{3}=\frac{1}{\sqrt{3}}$

CAT Online Course
Also Check: 841+ CAT Quant Questions with Solutions

CAT 2019 Slot-1

CAT 2019 Slot-2

CAT online Courses

FREE CAT Prep Whatsapp Group

CAT 2024 Online Course at affordable price