Bodhee Prep-CAT Online Preparation

CAT 2019 Quant Question with Solution 25

Question:
The number of the real roots of the equation $2 \cos (x(x+1))=2^{x}+2^{-x}$ is

  1. 2
  2. 1
  3. infinite
  4. 0
Show Answer

Correct Answer: Option: 2

For any real value of x, the expression $2 \cos (x(x+1))=2^{x}+2^{-x}$ would always be positive.

Lets find the maximum value of $2 \cos (x(x+1))=2^{x}+2^{-x}$.

Applying AM-GM inequality we have

$\frac{{{2}^{x}}+{{2}^{-x}}}{2}\ge \sqrt{{{2}^{x}}\times {{2}^{-x}}}$

$\Rightarrow {{2}^{x}}+{{2}^{-x}}\ge 2\sqrt{{{2}^{0}}}$

$\Rightarrow {{2}^{x}}+{{2}^{-x}}\ge 2$

Therefore, $2\cos \left( x\left( x+1 \right) \right)\ge 2$

It is known that $-1\le \cos \theta \le 1$

$\Rightarrow 2\cos \left( x\left( x+1 \right) \right)=2$

Hence, the expression is valid only if ${{2}^{x}}+{{2}^{-x}}=2$, which is true for only one value of x i.e. 0.

Therefore, the expression has only one real solution.


CAT Online Course
Also Check: 841+ CAT Quant Questions with Solutions

CAT 2019 Slot-1


CAT 2019 Slot-2

CAT 2023
Classroom Course

We are starting classroom course for CAT 2023 in Gurugram from the month of December.
Please fill the form to book your seat for FREE Demo Classes

CAT 2023 Classroom Course starts in Gurgaon