Bodhee Prep-CAT Online Preparation

CAT 2019 Quant Question with Solution 26

Question:
Let $x$ and $y$ be positive real numbers such that $\log _{5}(x+y)+\log _{5}(x-y)=3,$ and $\log _{2} y-\log _{2} x=1-\log _{2} 3 .$ Then xy equals

  1. 250
  2. 25
  3. 100
  4. 150
Show Answer

Correct Answer: Option: 4

${{\log }_{5}}(x+y)+{{\log }_{5}}(x-y)=3$

$\Rightarrow {{\log }_{5}}\left[ \left( x+y \right)\left( x-y \right) \right]=3$

$\Rightarrow \left( x+y \right)\left( x-y \right)={{5}^{3}}=125$

$\Rightarrow {{x}^{2}}-{{y}^{2}}=125...(1)$

And $\log _{2} y-\log _{2} x=1-\log _{2} 3 .$

$\Rightarrow \log _{2}\left(\frac{y}{x}\right)=\log _{2} 2-\log _{2} 3$

$\Rightarrow \log _{2}\left(\frac{y}{x}\right)=\log _{2}\left(\frac{2}{3}\right)$

$\Rightarrow \frac{y}{x}=\frac{2}{3}$

Let $x = 3k$ and $y=2k$. Putting the values in (1)

$(3k)^{2}-(2k)^{2}=125$

$\Rightarrow 5k^{2}=125$

$\Rightarrow k=5$

Hence $x \times y = 3k \times 2k =6 \times 25 = 150$


CAT Online Course
Also Check: 841+ CAT Quant Questions with Solutions

CAT 2019 Slot-1


CAT 2019 Slot-2

CAT 2023
Classroom Course

We are starting classroom course for CAT 2023 in Gurugram from the month of December.
Please fill the form to book your seat for FREE Demo Classes

CAT 2023 Classroom Course starts in Gurgaon