CAT 2019 Quant Question with Solution 20

AB is a diameter of a circle of radius 5 cm. Let P and Q be two points on the circle so that the length of PB is 6 cm, and the length of AP is twice that of AQ. Then the length, in cm, of QB is nearest to

  1. 7.8
  2. 8.5
  3. 9.1
  4. 9.3
Show Answer

Correct Answer: Option: 3

Refer to the figure below:

$\angle APB=\angle AQB={{90}^{0}}$ {angle in a semicircle is a right angle}

Also, let AQ=x, so AP=2x

In Right $\Delta APB$


$A{{P}^{2}}=A{{B}^{2}}-B{{P}^{2}}$ $\begin{align} & \Rightarrow A{{P}^{2}}={{10}^{2}}-{{6}^{2}}={{8}^{2}} \\ & \Rightarrow AP=8\Rightarrow 2x=8 \\ & \Rightarrow x=4 \\ \end{align}$

Similarly, in Right $\Delta AQB$

$\begin{align} & B{{Q}^{2}}=A{{B}^{2}}-A{{Q}^{2}} \\ & \Rightarrow B{{Q}^{2}}={{10}^{2}}-{{4}^{2}}=84 \\ & \Rightarrow BQ=\sqrt{84}\approx 9.1 \\ \end{align}$

CAT Online Course
Also Check: 841+ CAT Quant Questions with Solutions

CAT 2019 Slot-1

CAT 2019 Slot-2

Bodhee Prep's YouTube channel
CAT Prep Whatsapp Group
CAT Prep Telegram Group