Bodhee Prep-CAT Online Preparation

CAT 2019 Quant Question with Solution 33

Question:
The number of solutions to the equation $|x|\left(6 x^{2}+1\right)=5 x^{2}$ is

Show Answer

Correct Answer: 5

case I: x=0.

Clearly, $x=0$ satisfy the equation.

case II: x>0

$|x|\left(6 x^{2}+1\right)=5 x^{2}$

$\Rightarrow x\left(6 x^{2}+1\right)=5 x^{2}$

$\Rightarrow 6 x^{2}+1-5 x=0$

On solving the quadratic equation, we get $x=\frac{1}{2},\frac{1}{3}$ (both valid)

Case III: x<0

$|x|\left(6 x^{2}+1\right)=5 x^{2}$

$\Rightarrow \quad-x\left(6 x^{2}+1\right)=5 x^{2}$

$\Rightarrow \quad 6 x^{2}+5 x+1=0$

On solving the quadratic equation, we get $x=\frac{-1}{2}\text{ ,}\frac{-1}{3}$ (both valid)

Hence there are 5 solutions.


CAT Online Course
Also Check: 841+ CAT Quant Questions with Solutions

CAT 2019 Slot-1


CAT 2019 Slot-2

CAT 2023
Classroom Course

We are starting classroom course for CAT 2023 in Gurugram from the month of December.
Please fill the form to book your seat for FREE Demo Classes

CAT 2023 Classroom Course starts in Gurgaon