Bodhee Prep-CAT Online Preparation

CAT 2019 Quant Question with Solution 38

Question:
How many pairs $(\mathrm{m}, \mathrm{n})$ of positive integers satisfy the equation $\mathrm{m}^{2}+105=\mathrm{n}^{2}$ ?

Show Answer

Correct Answer: 4

Shortcut:

Number of pairs = $\frac{number\ of\ factors\ 105}{2}$

$105=3\times 5\times 7$

Number of factors = $2\times 2\times 2=8$

Hence, required number of pairs =8/2 =4

Detailed Explanation:

${{\text{m}}^{2}}+105={{\text{n}}^{2}}$

$\Rightarrow {{n}^{2}}-{{m}^{2}}=105$

$\Rightarrow \left( n-m \right)\left( n+m \right)=105$

Since m and n are positive integers, $\left( n-m \right)<\left( n+m \right)$

Splitting 105 in two factors, we get

$\Rightarrow \left( n-m \right)\left( n+m \right)=1\times 105$

For $\left( n-m \right)=1$ and $\left( n+m \right)=105$, $(m,n)=(52,53)$

$\Rightarrow \left( n-m \right)\left( n+m \right)=3\times 35$

For $\left( n-m \right)=3$ and $\left( n+m \right)=35$, $(m,n)=(16,19)$

$\Rightarrow \left( n-m \right)\left( n+m \right)=5\times 21$

For $\left( n-m \right)=5$ and $\left( n+m \right)=21$, $(m,n)=(8,13)$

$\Rightarrow \left( n-m \right)\left( n+m \right)=7\times 21$

For $\left( n-m \right)=7$ and $\left( n+m \right)=21$, $(m,n)=(4,11)$

Hence there are four pairs.


CAT Online Course
Also Check: 841+ CAT Quant Questions with Solutions

CAT 2019 Slot-1


CAT 2019 Slot-2

CAT 2023
Classroom Course

We are starting classroom course for CAT 2023 in Gurugram from the month of December.
Please fill the form to book your seat for FREE Demo Classes

CAT 2023 Classroom Course starts in Gurgaon