CAT 2020 Quant Question [Slot 2] with Solution 24

Question

From an interior point of an equilateral triangle, perpendiculars are drawn on all three sides. The sum of the lengths of the three perpendiculars is s. Then the area of the triangle is

  1. \(\frac{{\sqrt 3 {s^2}}}{2}\)
  2. \(\frac{{{s^2}}}{{\sqrt 3 }}\)
  3. \(\frac{{2{s^2}}}{{\sqrt 3 }}\)
  4. \(\frac{{{s^2}}}{{2\sqrt 3 }}\)
Option: 2
Solution:

PD + PE + PF = s

Area of

\( = \frac{1}{2} \times AB \times PE + \frac{1}{2} \times BC \times PD + \frac{1}{2} \times AC \times PF\)

As \(AB = BC = CA,\) we've

\( = \frac{1}{2} \times AB(PD + PE + PF) = \frac{1}{2}AB \times s - (1)\)

Now \(\frac{{\sqrt 3 }}{4}A{B^2} = \frac{1}{2}AB \times s\)

\( \Rightarrow AB = \frac{2}{{\sqrt 3 }}s\)

Required value \( = \frac{1}{2} \times \frac{2}{{\sqrt 3 }} \times {s^2} = \frac{{{s^2}}}{{\sqrt 3 }}\)

CAT 2021 Online Course @ INR 8999 only

CAT 2020 Quant questions with Solutions

CAT 2021 Crash Course + Mock Test Series (INR 4999 Only)


  • 50 Live Sessions
  • 1000+ Practice problems
  • 30 Sectional Tests
  • 15 CAT Mock Tests (Video Solutions)
  • Dedicated Whatsapp group for doubt clearing
  • Valid till 31st March 2022
Enroll Now
Bodhee Prep's YouTube channel
CAT Prep Whatsapp Group
CAT Prep Telegram Group
X
CAT prep Telegram Group