Bodhee Prep-CAT Online Preparation

CAT 2018 [SLOT 1] Quant Question with Solution 31

Let f(x) = min{2x2,52−5x}, where x is any positive real number. Then the maximum possible value of f(x) is

Show Answer
Correct Answer: 32

f(x) = min (${2x^{2},52-5x}$)

The maximum possible value of this function will be attained when $2x^{2}=52-5x$.



=> $x=\frac{-13}{2}$ or $x = 4$

Since x has to be positive integer, we can discard the case $x=\frac{-13}{2}$.

$x=4$ is the point at which the function attains the maximum value.

putting $x=4$ in the original function, we get, $2x^2 = 2*4^2= 32$.

Or the maximum value of f(x) = $32$.

CAT Online Course
Also Check: 841+ CAT Quant Questions with Solutions

CAT 2018 Slot-1

CAT 2018 Slot-2

CAT Quant Questions with Video Solutions

30 must do CAT Quant Questions with Video Solutions

CAT 2023
Classroom Course

We are starting classroom course for CAT 2023 in Gurugram from the month of December.
Please fill the form to book your seat for FREE Demo Classes

CAT 2023 Classroom Course starts in Gurgaon