Bodhee Prep-Online CAT Coaching | Online CAT Preparation | CAT Online Courses

Get 10% OFF on CAT 25 Courses. Code: BODHEE10 Valid till 07th April Enroll Now

CAT 2018 [SLOT 1] Quant Question with Solution 24

Question:
In a circle with center O and radius 1 cm, an arc AB makes an angle 60 degrees at O. Let R be the region bounded by the radii OA, OB and the arc AB. If C and D are two points on OA and OB, respectively, such that OC = OD and the area of triangle OCD is half that of R, then the length of OC, in cm, is

  1. \({\left( {\frac{\pi }{{3\sqrt 3 }}} \right)^{\frac{1}{2}}}\)
  2. \({\left( {\frac{\pi }{4}} \right)^{\frac{1}{2}}}\)
  3. \({\left( {\frac{\pi }{6}} \right)^{\frac{1}{2}}}\)
  4. \({\left( {\frac{\pi }{{4\sqrt 3 }}} \right)^{\frac{1}{2}}}\)
Show Answer
Correct Answer: 1
It is given that radius of the circle = 1 cm
Chord AB subtends an angle of 60° on the centre of the given circle. R be the region bounded by the radii OA, OB and the arc AB.
Therefore, R = $\frac{60°}{360°}$×Area of the circle = $\frac{1}{6}$×$\pi×(1)^2$ = $\frac{\pi}{6}$ sq. cm

It is given that OC = OD and area of triangle OCD is half that of R. Let OC = OD = x.
Area of triangle COD = $\frac{1}{2}×OC×OD×sin60°$
$\frac{\pi}{6×2}$ = $\frac{1}{2}×x×x×\frac{\sqrt{3}}{2}$
$\Rightarrow$ $x^2 = \frac{\pi}{3\sqrt{3}}$
$\Rightarrow$ $x$ = $(\frac{\pi}{3\sqrt{3}})^{\frac{1}{2}}$ cm.

CAT Online Course
Also Check: 841+ CAT Quant Questions with Solutions

CAT 2018 Slot-1


CAT 2018 Slot-2


CAT Quant Questions with Video Solutions

30 must do CAT Quant Questions with Video Solutions
CAT online Courses

FREE CAT Prep Whatsapp Group

CAT 2025 best online courses

Online CAT Courses