QUESTION 1
Naval writes 28 consecutive numbers. If both the smallest and the largest numbers are perfect squares, which of the following is the smallest number he wrote?
1. 9
2. 36
3. 100
4. Cannot be uniquely determined
Option: 4
Video Explanation
CAT Online Course @ INR 13999 only

QUESTION 2
If ${4^a} = 5,\;{5^b} = 6,\;{6^c} = 7,\;and\;{7^d} = 8$ . What is the value of $a \times b \times c \times d$
1. 1
2. $\cfrac{3}{2}$
3. 2
4. $\cfrac{5}{2}$
Option: 2
Video Explanation
CAT Online Course @ INR 13999 only

QUESTION 3
Let x, y, and z be positive integers and $\frac{x}{3},\frac{y}{4},\ and\ \frac{z}{6}$ are proper fractions in the simplest form. If $\frac{x+z}{3}+\frac{y+z}{4}+\frac{z}{3}=6$ , Find the value of $x+y+z$
Video Explanation
CAT Online Course @ INR 13999 only

QUESTION 4
Let $x=\frac{{{a}_{1}}}{\left| {{a}_{1}} \right|}+\frac{{{a}_{2}}}{\left| {{a}_{2}} \right|}+\frac{{{a}_{3}}}{\left| {{a}_{3}} \right|}...+\frac{{{a}_{10}}}{\left| {{a}_{10}} \right|}$ where ${{a}_{1}},{{a}_{2}},{{a}_{3}},...,{{a}_{10}}$ are real numbers. How many distinct value x can have?