Bodhee Prep-CAT Online Preparation

CAT 2017 [slot 1] Question with solution 07

Question 7:
A man travels by a motor boat down a river to his office and back. With the speed of the river unchanged, if he doubles the speed of his motor boat, then his total travel time gets reduced by 75%. The ratio of the original speed of the motor boat to the speed of the river is
  1. $\sqrt{6}:\sqrt{2}$
  2. $\sqrt{7}:2$
  3. $2\sqrt{5}:3$
  4. 3:2
Option: 2
Explanation:

Let the speed of the river be $x$ and the speed of the boat be $u$. Let $d$ be the one way distance and $t$ be the initial time taken.

Given,

$t = \frac{d}{u - x} + \frac{d}{u + x}$ ... i

Also,

$\frac{t}{4} = \frac{d}{2u - x} + \frac{d}{2u + x}$

$t = \frac{4d}{2u - x} + \frac{4d}{2u + x}$ ... ii

Equating both i and ii,

$\frac{d}{u - x}$+ $\frac{d}{u + x}$ = $\frac{4d}{2u - x} + \frac{4d}{2u + x}$

$\frac{2u}{u^2 - x^2} = \frac{16u}{4u^2 - x^2}$

$4u^2 - x^2 = 8u^2 - 8x^2$

$\frac{u^2}{x^2} = \frac{7}{4}$

$\frac{u}{x} = \frac{\sqrt{7}}{2}$


Previous QuestionNext Question

CAT 2023
Classroom Course

We are starting classroom course for CAT 2023 in Gurugram from the month of December.
Please fill the form to book your seat for FREE Demo Classes

CAT 2023 Classroom Course starts in Gurgaon