Question 67:
An infinite geometric progression $a_1,a_2,...$ has the property that $a_n= 3(a_{n+1}+ a_{n+2} + ...)$ for every n $\geq$ 1. If the sum $a_1+a_2+a_2...+=32$, then $a_5$ is
Previous QuestionNext Question
An infinite geometric progression $a_1,a_2,...$ has the property that $a_n= 3(a_{n+1}+ a_{n+2} + ...)$ for every n $\geq$ 1. If the sum $a_1+a_2+a_2...+=32$, then $a_5$ is
- 1/32
- 2/32
- 3/32
- 4/32
Option: 3
Explanation:
Explanation:
Let the common ratio of the G.P. be r.
Hence we have $a_n= 3(a_{n+1}+ a_{n+2} + ...)$
=> $a_n= 3(\frac{a_{n+1}}{1-r})$
=> $a_n= 3(\frac{a_{n}\times r}{1-r})$
=> $ r = \frac{1}{4}$
Now, $a_1+a_2+a_2...+=32$
=> $\frac{a_1}{1-r} = 32$
=> $\frac{a_1}{3/4} = 32$
=> $a_1 = 24$
$a_5 = a_1 \times r^4$
$a_5 = 24 \times (1/4)^4 = \frac{3}{32}$
Previous QuestionNext Question