Bodhee Prep-Online CAT Coaching | Online CAT Preparation | CAT Online Courses

Get 30% OFF on CAT Crash Course. Code: LASTLAP. Course starts from 18th Sept Enroll Now

CAT 2017 [slot 2] Question with solution 33

Question 67:
An infinite geometric progression $a_1,a_2,...$ has the property that $a_n= 3(a_{n+1}+ a_{n+2} + ...)$ for every n $\geq$ 1. If the sum $a_1+a_2+a_2...+=32$, then $a_5$ is
  1. 1/32
  2. 2/32
  3. 3/32
  4. 4/32
Option: 3
Explanation:

Let the common ratio of the G.P. be r.
Hence we have $a_n= 3(a_{n+1}+ a_{n+2} + ...)$
=> $a_n= 3(\frac{a_{n+1}}{1-r})$
=> $a_n= 3(\frac{a_{n}\times r}{1-r})$
=> $ r = \frac{1}{4}$
Now, $a_1+a_2+a_2...+=32$
=> $\frac{a_1}{1-r} = 32$
=> $\frac{a_1}{3/4} = 32$
=> $a_1 = 24$

$a_5 = a_1 \times r^4$
$a_5 = 24 \times (1/4)^4 = \frac{3}{32}$


Previous QuestionNext Question
CAT online Courses

CAT 2023 Mock Test Series

  • 400+ Topic Tests
  • 45 Sectional tests
  • 20 Mock Tests (Video Solutions)
  • Only at INR 2499

20% Discount Code: GET20

FREE CAT Prep Whatsapp Group

CAT 2023 Online Course at affordable price