Question 59:
If $9^{x-\frac{1}{2}}-2^{2x-2}=4^{x}-3^{2x-3}$, then $x$ is
Previous QuestionNext Question
If $9^{x-\frac{1}{2}}-2^{2x-2}=4^{x}-3^{2x-3}$, then $x$ is
- 3/2
- 2/5
- 3/4
- 4/9
Option: 1
Explanation:
Explanation:
It is given that $9^{x-\frac{1}{2}}-2^{2x-2}=4^{x}-3^{2x-3}$
Let us try to reduce them to powers of $3$ and $2$
The given equation can be reduced to $3^{2x-1} + 3^{2x-3} = 2^{2x} + 2^{2x-2}$
Hence, $3^{2x-3} \times 10 = 2^{2x-2} \times 5$
Therefore, $3^{2x-3} = 2^{2x-3}$
This is possible only if $2x-3=0$ or $x=3/2$
Previous QuestionNext Question