Question 57:
Let $f(x) = x^{2}$ and $g(x) = 2^{x}$, for all real x. Then the value of f(f(g(x)) + g(f(x)) ) at x = 1 is
Previous QuestionNext Question
Let $f(x) = x^{2}$ and $g(x) = 2^{x}$, for all real x. Then the value of f(f(g(x)) + g(f(x)) ) at x = 1 is
- 16
- 18
- 36
- 40
Option: 3
Explanation:
Explanation:
$f[f(g(1)) + g(f(1))]$
= $f[f(2^1) + g(1^2)]$
= $f[f(2) + g(1)]$
= $f[2^2 + 2^1]$
= $f(6)$
= $6^2 = 36$
Previous QuestionNext Question