CAT Quant Practice Problems

Question: Let a = p and b = q, where p and q are positive quantities.

Define \(\begin{array}{l}{a_n} = p{b_{n - 1}},{\rm{ }}{{\rm{b}}_n} = q{b_{n - 1}},{\rm{ \;for\; even \;}}n > 1\\and{\;\rm{ }}{a_n} = p{a_{n - 1}},{b_n} = q{a_{n - 1}},{\rm{ for\;odd\;n>1?}}\end{array}\)

Which of the following best describes \({a_n} + {b_n}\) for even ‘n’?

\(q{\left( {pq} \right)^{\frac{1}{2}n - 1}}\left( {p + q} \right)\)
\(q{p^{\frac{1}{2}n - 1}}\left( {p + q} \right)\)
\({q^{\frac{1}{2}n}}\left( {p + q} \right)\)
\({q^{\frac{1}{2}n}}{\left( {p + q} \right)^{\frac{1}{2}n}}\)
\(q{\left( {pq} \right)^{\frac{1}{2}n - 1}}{\left( {p + q} \right)^{\frac{1}{2}n}}\)
Show Answer
Please Login to see the answer



Back to Main Page

CAT Quant Online Course


  • 1000+ Practice Problems
  • Detailed Theory of Every Topics
  • Online Live Sessions for Doubt Clearing
  • All Problems with Video Solutions
₹ 2999
CAT Quant Practice Problems
4.7 (94.55%) 11 votes