CAT Quant Practice Problems

Question: Let a = p and b = q, where p and q are positive quantities.

Define \(\begin{array}{l}{a_n} = p{b_{n - 1}},{\rm{ }}{{\rm{b}}_n} = q{b_{n - 1}},{\rm{ \;for\; even \;}}n > 1\\and{\;\rm{ }}{a_n} = p{a_{n - 1}},{b_n} = q{a_{n - 1}},{\rm{ for\;odd\;n>1?}}\end{array}\)

Which of the following best describes \({a_n} + {b_n}\) for even ‘n’?


  1. \(q{\left( {pq} \right)^{\frac{1}{2}n - 1}}\left( {p + q} \right)\)
  2. \(q{p^{\frac{1}{2}n - 1}}\left( {p + q} \right)\)
  3. \({q^{\frac{1}{2}n}}\left( {p + q} \right)\)
  4. \({q^{\frac{1}{2}n}}{\left( {p + q} \right)^{\frac{1}{2}n}}\)
  5. \(q{\left( {pq} \right)^{\frac{1}{2}n - 1}}{\left( {p + q} \right)^{\frac{1}{2}n}}\)

Correct Option:1

CAT 2019 Online Course


CAT Quant Questions with Video Solutions


CAT Quant Practice Problems
4.3 (86%) 20 vote[s]