CAT 2019 Quant Questions with Solutions

If $(2 n+1)+(2 n+3)+(2 n+5)+\ldots+(2 n+47)=5280,$ then what is the value of $1+2+3+\ldots+n$ ?

Show Answer

Correct Answer: 4851

The sequence $(2 n+1)+(2 n+3)+(2 n+5)+\ldots+(2 n+47)=5280,$ is in arithmetic progression with first term (a) = 2n+1, common difference (d) = 2 and last term ($t_{n}$)=2n+47.

Let ‘m’ be the number of terms in this sequence.

The last term of A.P. is given by a+(n-1)d

$\Rightarrow \left( 2n+1 \right)+(m-1)(2)=2n+47$

$\Rightarrow m=24$


$(2 n+1)+(2 n+3)+(2 n+5)+\ldots+(2 n+47)=5280,$

$=\frac{24}{2}\left[ 2\left( 2n+1 \right)+\left( 24-1 \right)\times 2 \right]$

$=24\left( 2n+1+23 \right)=48\left( n+12 \right)$

Therefore, $48\left( n+12 \right)=5280\Rightarrow n=98$

Hence, $1+2+3+\ldots +n=\frac{n(n+1)}{2}=\frac{98\times 99}{2}=4851$

Get one day FREE Trial of CAT online Full course FREE Registration
Also Check: 841+ CAT Quant Questions with Solutions

CAT Quant Online Course

  • 1000+ Practice Problems
  • Detailed Theory of Every Topics
  • Online Live Sessions for Doubt Clearing
  • All Problems with Video Solutions
₹ 2999

CAT 2019 Slot-1

CAT 2019 Slot-2

Try CAT 2020 online course for 1 day for FREE

Please provide your details to get FREE Trial of Bodhee Prep's Online CAT Course for one day. We will inform you about the trial on your whatsApp number with the activation code.