CAT 2019 Quant Questions with Solutions

Question:
Let A be a real number. Then the roots of the equation $x^{2}-4 x-\log _{2} A=0$ are real and distinct if and only if

$A>1 / 16$
$A>1 / 8$
$A<1 / 16$
$A<1 / 8$
Show Answer

Correct Answer: Option: 1

For quadratic equation $a x^{2}+b x+c=0$, the roots are real and distinct if $b^{2}-4 a c>0$

Given, $x^{2}-4 x-\log _{2} A=0$

$\therefore(-4)^{2}-4 \times 1 \times\left(-\log _{2} A\right)>0$

$\Rightarrow 16+4 \log _{2} A>0$

$\Rightarrow \log _{2} A>-4$

$\Rightarrow A>2^{-4}$

$\Rightarrow A>\frac{1}{16}$


Get one day FREE Trial of CAT online Full course FREE Registration
Also Check: 841+ CAT Quant Questions with Solutions


CAT Quant Online Course


  • 1000+ Practice Problems
  • Detailed Theory of Every Topics
  • Online Live Sessions for Doubt Clearing
  • All Problems with Video Solutions
₹ 2999

CAT 2019 Slot-1


CAT 2019 Slot-2


Try CAT 2020 online course for 1 day for FREE