# CAT 2019 Quant Questions with Solutions

Question:
AB is a diameter of a circle of radius 5 cm. Let P and Q be two points on the circle so that the length of PB is 6 cm, and the length of AP is twice that of AQ. Then the length, in cm, of QB is nearest to

 7.8 8.5 9.1 9.3

Refer to the figure below:

$\angle APB=\angle AQB={{90}^{0}}$ {angle in a semicircle is a right angle}

Also, let AQ=x, so AP=2x

In Right $\Delta APB$

$A{{P}^{2}}=A{{B}^{2}}-B{{P}^{2}}$

$A{{P}^{2}}=A{{B}^{2}}-B{{P}^{2}}$ \begin{align} & \Rightarrow A{{P}^{2}}={{10}^{2}}-{{6}^{2}}={{8}^{2}} \\ & \Rightarrow AP=8\Rightarrow 2x=8 \\ & \Rightarrow x=4 \\ \end{align}

Similarly, in Right $\Delta AQB$

\begin{align} & B{{Q}^{2}}=A{{B}^{2}}-A{{Q}^{2}} \\ & \Rightarrow B{{Q}^{2}}={{10}^{2}}-{{4}^{2}}=84 \\ & \Rightarrow BQ=\sqrt{84}\approx 9.1 \\ \end{align}

Get one day FREE Trial of CAT online Full course
Also Check: 841+ CAT Quant Questions with Solutions

#### CAT Quant Online Course

• 1000+ Practice Problems
• Detailed Theory of Every Topics
• Online Live Sessions for Doubt Clearing
• All Problems with Video Solutions