**Question: **

Points E, F, G, H lie on the sides AB, BC, CD, and DA, respectively, of a square ABCD. If EFGH is also a square whose area is 62.5% of that of ABCD and CG is longer than EB, then the ratio of length of EB to that of CG is

2 : 5 | |

4 : 9 | |

3 : 8 | |

1 : 3 |

**Show Answer**

It is given that EFGH is also a square whose area is 62.5% of that of ABCD. Let us assume that E divides AB in x : 1. Because of symmetry we can se that points F, G and H divide BC, CD and DA in x : 1.

Let us assume that 'x+1' is the length of side of square ABCD.

Area of square ABCD = $(x+1)^2$ sq. units.

Therefore, area of square EFGH = $\frac{62.5}{100}*(x+1)^2$ = $\frac{5(x+1)^2}{8}$ ... (1)

In right angle triangle EBF,

$EF^2 = EB^2 + BF^2$

$\Rightarrow$ $EF = \sqrt{1^2+x^2}$

Therefore, the area of square EFGH = $EF^2$ = $x^2+1$ ... (2)

By equating (1) and (2),

$x^2+1 = \frac{5(x+1)^2}{8}$

$\Rightarrow$ $8x^2+8 = 5x^2+10x+5$

$\Rightarrow$ $3x^2-10x+3 = 0$

$\Rightarrow$ $(x - 3)(3x - 1) = 0$

$\Rightarrow$ $x = 3$ or $1/3$

The ratio of length of EB to that of CG = 1 : x

EB : CG = 1 : 3 or 3 : 1.

**Also Check:**841+ CAT Quant Questions with Solutions

## CAT Quant Questions with Video Solutions

CAT Quant Questions Set 01CAT Quant Questions Set 02

CAT Quant Questions Set 03

CAT Quant Questions Set 04

CAT Quant Questions Set 05

CAT Quant Questions Set 06

#### CAT Quant Online Course

- 1000+ Practice Problems
- Detailed Theory of Every Topics
- Online Live Sessions for Doubt Clearing
- All Problems with Video Solutions

**CAT 2018 Questions Paper with Solution PDF **Download