CAT 2018 Quant Questions

If x is a positive quantity such that \({2^x} = {3^{{{\log }_5}2}}\) , then x is equal to

\(1 + {\log _3}\frac{5}{3}\)
\({\log _5}8\)
\(1 + {\log _5}\frac{3}{5}\)
\({\log _5}9\)
Show Answer
Correct Answer: 3

Givne that: $2^{x}=3^{\log_{5}{2}}$

$\Rightarrow$ $2^{x}=2^{\log_{5}{3}}$

$\Rightarrow$ $x=\log_{5}{3}$

$\Rightarrow$ $x=\log_{5}{\frac{3*5}{5}}$

$\Rightarrow$ $x=\log_{5}{5}+\log_{5}{\frac{3}{5}}$

$\Rightarrow$ $x=1+\log_{5}{\frac{3}{5}}$.

CAT Online Course
Also Check: 841+ CAT Quant Questions with Solutions

CAT Quant Online Course

  • 1000+ Practice Problems
  • Detailed Theory of Every Topics
  • Online Live Sessions for Doubt Clearing
  • All Problems with Video Solutions
₹ 2999

CAT 2018 Questions Paper with Solution PDF Download

CAT 2018 Quant Questions with Solutions

CAT 2018 Slot-1

CAT 2018 Slot-2

Back to Main Page