Question:
If p3 = q4 = r5 = s6, then the value of logs(pqr) is equal to
16/5 | |
1 | |
24/5 | |
47/10 |
Correct Answer: 4
Let $p^{3}=q^{4}=r^{5}=s^{6}=k$
$p=k^{1 / 3}, q=k^{1 / 4}, r=k^{1 / 5}, s=k^{1 / 6}$
$\text{pqr}={{\text{k}}^{\left( \frac{20+15+12}{60} \right)}}={{\text{k}}^{\frac{47}{60}}}$
${{\log }_{\text{s}}}(\text{pqr})={{\log }_{{{\text{k}}^{\frac{1}{6}}}}}{{\text{k}}^{\frac{47}{60}}}$
$=\left(\frac{47}{60} \times 6\right) \log _{\mathrm{k}} \mathrm{k}$
$=\frac{47}{10}$
Let $p^{3}=q^{4}=r^{5}=s^{6}=k$
$p=k^{1 / 3}, q=k^{1 / 4}, r=k^{1 / 5}, s=k^{1 / 6}$
$\text{pqr}={{\text{k}}^{\left( \frac{20+15+12}{60} \right)}}={{\text{k}}^{\frac{47}{60}}}$
${{\log }_{\text{s}}}(\text{pqr})={{\log }_{{{\text{k}}^{\frac{1}{6}}}}}{{\text{k}}^{\frac{47}{60}}}$
$=\left(\frac{47}{60} \times 6\right) \log _{\mathrm{k}} \mathrm{k}$
$=\frac{47}{10}$
Get one day FREE Trial of CAT online Full course FREE Registration
Also Check: 841+ CAT Quant Questions with Solutions
CAT Quant Questions with Video Solutions
CAT Quant Questions Set 01CAT Quant Questions Set 02
CAT Quant Questions Set 03
CAT Quant Questions Set 04
CAT Quant Questions Set 05
CAT Quant Questions Set 06
CAT Quant Online Course
- 1000+ Practice Problems
- Detailed Theory of Every Topics
- Online Live Sessions for Doubt Clearing
- All Problems with Video Solutions
₹ 2999
CAT 2018 Questions Paper with Solution PDF Download